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Abstract

Este trabajo tiene como objetivo el desarrollo de un modelo de apuntado para HAR-
MONI, uno de los instrumentos de primera luz del Telescopio Extremadamente Grande
(ELT). Puesto que HARMONI está diseñado para trabajar al ĺımite de difracción del tele-
scopio (∼ 10 mas, ∼ 30 µm), la caracterización de los distintos efectos capaces de afectar
a la posición de los puntos de la imagen en el plano focal es cŕıtica.

Esto se conseguirá mediante la definición de un modelo optomecánico de HARMONI.
El modelo servirá para validar el diseño final del instrumento, la eficacia del modelo
de apuntado a la hora de corregir la firma instrumental de HARMONI y el coste de
la estrategia de calibración. Este último dato servirá para optimizar tanto el tiempo
requerido para caracterizar los efectos sistemáticos del instrumento como el diseño de la
máscara de calibración en śı.

El modelo optomecánico se implementó en un simulador de apuntado escrito en Python
3. Algunos de los resultados producidos por este simulador son mapas de calor del error de
apuntado, parámetros del modelo de apuntado, residuos del modelo y gráficos temporales
del proceso de calibración.

Debido a que el conocimiento que se tiene de las propiedades del instrumento es lim-
itada en esta fase de diseño, el simulador se debe considerar un prototipo. Sin embargo,
su arquitectura software permite incluir futuros refinamientos del modelo optomecánico
de forma sencilla y sienta las bases para su empleo de forma regular en el observatorio.
Además, algunos de sus resultados (como la determinación de la mejor estrategia de cali-
bración) ya son útiles y se espera su inclusión en los documentos técnicos de HARMONI.

∗ ∗ ∗

The goal of this master thesis is the development of a pointing model for HARMONI,
one of the first-light instruments of the Extremely Large Telescope (ELT). As HARMONI
was designed to work in the diffraction limit of the telescope (∼ 10 mas, ∼ 30 µm), the
characterisation of the different effects that may affect the position of the points of the
image in the focal plane is critical.

This will be achieved by the definition of an opto-mechanical model of HARMONI.
This model will enable validation of the final design of the instrument, the effectiveness
of the pointing model over HARMONI’s instrumental signature and the cost of the cal-
ibration strategy. This latter result can be used both to optimise the time required to
characterise the systematic effects of the instrument and the design of the calibration
mask itself.

The opto-mechanical model was implemented inside a simulator written in Python 3.
Some of the results produced by the simulator are pointing error heatmaps, parameters
of the pointing model, model residuals and time plots of the calibration process.

As the available knowledge of the instrument was limited in this stage of design, the
simulator must be considered a prototype. Nonetheless, its architecture enables future
refinements of the opto-mechanical model in a simple manner, and sets the foundation for
its regular usage during observatory operations. Additionally, some of its results (like the
determination of the optimal calibration strategy) are already useful and its inclusion in
the technical documents of HARMONI is expected.



1 ELT-HARMONI

1. ELT-HARMONI

1.1. Introduction

The Extremely Large Telescope (ELT) is a 39-m class adaptive telescope led by the European
Southern Observatory (ESO), currently under construction in Cerro Armazones (Chile). By the
time of its completion (circa 2026) it will be the largest VIS-IR telescope ever built. As other
contemporary telescopes, ELT will be able to perform diffraction-limited observations by means
of adaptive optics (AO) techniques. However, while current 8-m class telescopes can achieve
angular resolutions of up to ∼ 50 mas (where mas stands for milliarcseconds), ELT expands
this limit up to ∼ 10 mas. These unprecedented figures will vastly advance our knowledge in
many branches of Astrophysics, from the study of the earliest galaxies to exoplanets[4].

Figure 1: Side by side size comparison between ELT and Sagrada Familia (credit: ESO)

HARMONI is a slicer-based integral field spectrograph (IFU) designed to operate in the
0.47 µm − 2.45 µm range (3500 < R < 18000) in a broad variety of scientific programs[8].
Its different spectral set-ups will enable both VIS-only observations as well as observations in
the NIR bands (including H, J, K and portions thereof). It will enable both AO (including
laser-tomography adaptive optics –LTAO–, single-conjugate adaptive optics –SCAO–, and high-
contrast adaptive optics –HCAO–) and non-AO observations, with fields of view (FoV) of
9” × 6”, 4” × 3”, 2” × 1.5” and 0.8” × 0.6”. In its highest resolution configuration, it will be
able to resolve objects at a pixel scale of 4 mas/px in a 0.8” × 0.6” FoV with a plate scale of
3.3mm/”.

Figure 2: HARMONI: an integral field spectrograph for ELT.

In order to achieve this resolution level, both HARMONI and ELT must co-operate in closed
loop mode, correcting its pointing continuously (order ∼ 1 Hz). This is done by measuring the
position of natural guide stars (NGS) outside the science field (in the so-called technical field)

1



1.1 Introduction 1 ELT-HARMONI

using a guiding probe in the form of a mobile mirror. The mobile mirror is installed at the
end of a 200 mm Pick-Off Arm (POA) that can be placed anywhere in the technical field with
a θ − φ positioning stage. This positioning stage consists of two precision rotors with rotary
encoders inserted in the Low-Order Wavefront Sensing subsystem (LOWFS). They provide the
POA with the two necessary degrees of freedom that ensure complete coverage of the technical
field, namely primary axis (θ) and secondary axis (φ).

Figure 3: Left: low-order wavefront sensing subsystem (LOWFS). The black structure in the
centre of the primary bearing is the POA. Right: degrees of freedom of the POA. Positive
increments of φ represent clockwise motion of the arm.

LOWFS belongs to a higher-level system called Natural Guide Star Sensing System (NGSS).
Its primary role is to track the position of natural stars both for pointing and wavefront sensing.

Figure 4: Top-level block diagram of the instrument [8].

Prior to its arrival to the NGSS, light entering the instrument (which includes science, laser

2



1.2 Calibration 1 ELT-HARMONI

stars and natural guide stars) has traversed multiple stages. In a first stage, the prefocal station
(PFS) installed in a Nasmyth platform routes the beam of light coming from the telescope to
the different focal planes in which instruments are installed. Dichroic filters installed in the
Calibration and Relay System (CARS) separate natural star light from laser star light. Finally,
the optics of the Focal Plane Relay Subsystem (FPRS) re-focuses the natural star light from
the telescope’s focal plane to the NGSS in the so-called relayed focal plane. This plane holds
a 1:1 magnification ratio with respect to the telescope’s focal plane, and it is the plane upon
which the POA senses guide stars.

1.2. Calibration

In order to exploit the diffraction-limit resolution of ∼ 10 mas, HARMONI’s detector must
Nyquist-sample the field of view. The current pixel scale (4 mas/px, 3.3mm/”) ensures this re-
quirement. Nonetheless, this also implies that the instrument must know the WCS coordinates
of every spaxel with certain accuracy (R-HRM-153). In practice, this is not only determined
by the current pointing of the instrument (determined by the reference pixel of the guide star),
but also by the instrumental signature due to opto-mechanical aberrations in the optical path.
This signature manifests itself as a certain distribution of systematic pointing errors along the
relayed focal plane. A non-comprehensive list of contributions to this error could be the re-
lay optics in the FPRS, wobblings of the derotator’s bearings or mechanical tolerances of the
structural components.

Figure 5: HARMONI’s calibration module.

This error is calibrated by means of the the calibration module, in which the Geometrical
Calibration Unit (GCU) is located. The GCU consists of a mask with a well-known pattern of
barely resolved point sources that can be inserted across the telescope beam over the telescope
focal plane. As the GCU mask pattern is known, the POA can be used to measure the apparent
location of these point sources in the relayed focal plane and calculate the displacement with
respect to their expected locations.

The result of the calibration is a corrective model (the pointing model) that compensates
mechanical and optical displacements of the system up to the positioning accuracy of the POA
(∼ 10 µm). This model is then used to provide an absolute geometrical reference for the guiding
probe over the whole technical field.

3



1.3 Motivation for this work 2 OPTO-MECHANICAL MODEL

During operation, pointing error measurements will be fed to certain calibration software
to obtain a pointing model. In order to optimise the number of free parameters of the model,
the software must take into account not only the error measurements but also the nature of
the processes causing them. Additionally, the pointing model may have less degrees of freedom
than points in the GCU mask used for calibration. This means that the software may also
provide hints to the control logic on how many and which calibration points are preferred.

1.3. Motivation for this work

The motivation of this work is the need for a characterisation of the performance of a
pointing model under different sets of calibration points. This will be achieved by means of
a software that will produce simulated measurements of the pointing error in different points.
The simulator must take into account all effects that may affect the pointing, and therefore an
opto-mechanical model of the instrument is required. The simulated measurements will then be
used to fit a pointing model whose performance will be measured in terms of model complexity
versus model residual.

The complexity of the instrument and the limited access to certain details of the instrument
design prevent covering all the potential sources of pointing error in the time span of a master
thesis. Instead, we will aim to provide a prototype simulator with a preliminary instrument
model that attempts to account for the main contributions to the pointing error. Both the
simulator and the instrument model are designed to ensure their extensibility in the form of
additional error contributions.

2. Opto-mechanical model

The opto-mechanical model of the instrument must attain the following objectives:

1. Enable the characterisation of the accuracy of the measurement process of pointing errors
by the POA.

2. Provide simulated measurements of the pointing error over the whole technical field, given
the previous characterisation of the POA accuracy and

3. Evaluate different calibration strategies.

2.1. Working hypotheses

In this first iteration of the model, we agreed on the following set of assumptions. Many
of them are based on technical documents of the instrument[10] describing the analysis of the
WCS budgets in relation to top-level requirements of the instrument:

• The behavior of light is well described by geometric optics.

• Focal surfaces are flat (focal planes). Although this is not exactly true, we do not expect
the pointing to be affected by the field curvature.

• Beams of light are described only by the location of their focal points. The description
of the radiation field inside the telescope is reduced to 2D flux density fields (W/m2).
Diffraction effects are modelled as convolutions by the PSF in the flux fields.

4



2.2 Parametrisation 2 OPTO-MECHANICAL MODEL

• Pointing errors are observed in the focal planes and Z-axis errors (focus) are compensated
by the wavefront sensor (WFS). This eliminates the necessity of tracing individual rays
and reduces the description of light beams to 2D (R2 → R2) transforms between focal
points. These transforms map the x1 = (x1, y1) coordinates of the point in the input
focal plane to the x2 = (x2, y2) coordinates of the output focal plane.

• Caustic-less regime. This implies that the reciprocal of each transform exists and is
unique.

Hence the description of the behavior of light is reduced to providing the set of T : R2 → R2

coordinate transforms such that x2 = T [x1]. This definition of the transforms –along with
their invertibility– leads to some convenient properties. In particular, the total error transform
can be split into individual transforms applied sequentially, each representing a conceptually
different error contribution.

2.2. Parametrisation

The model accepts a set of parameters that may be either fixed values or random variables,
being the latter the most numerous. For each random variable, not only the nominal value of
the variable but also the specific probability distribution (along with other non-central param-
eters like its variance) must be provided. Additionally, parameters of the model are classified
according to the time at which they are sampled:

• Fixed. The parameter describes a quantity that is known with absolute precision (e.g.
bit resolution of an encoder).

• Instrument manufacturing. The variable describes a tolerance that is sampled upon
manufacturing.

• Calibration session. The variable describes a quantity that remains constant during cali-
bration (e.g. misalignment of the GCU after deployment).

• Arm positioning. The variable describes a quantity that remains constant after the arm
is moved (e.g. true primary axis angle).

2.3. GCU mask

The fundamental reference for calibration is the GCU mask. The GCU mask consists of
a circular plate with a pattern of barely resolved point sources whose geometry is assumed
to be known beforehand with certain tolerance. When deployed, the GCU mask is inserted
in the telescope’s focal plane –right before the FPRS– and enables the characterisation of the
opto-mechanical aberrations of the instrument.
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2.4 Transform pipelines 2 OPTO-MECHANICAL MODEL

Figure 6: Detail of the GCU and the technical field mask (also known as GCU mask).

In the current iteration, the GCU mask is simply modelled as a square grid of homogeneously-
illuminated circular points. The parameters defining the GCU mask model are:

Table 1: Parameters describing the GCU mask.

Symbol Description Sampling time
hp Point separation between consecutive centres Fixed
Dp Point diameter Fixed
Fp Point’s spectral flux density (in dimensions of MT−2) Fixed
x0 X coordinate of the central point Fixed
y0 Y coordinate of the central point Fixed
DM Mask diameter Fixed

This model can be used to compute the locations of the mask dots, which are given by:

G = {(x0 + ihp, y0 + jhp)|i, j ∈ Z, ‖(x0 + ihp, y0 + jhp)‖ < DM} ⊂ R2 (2.3.1)

Future iterations of the model may require a more realistic description of the GCU, with
contributions like manufacturing tolerances acting individually on each mask dot.

2.4. Transform pipelines

The entry point of light of the instrument is always the telescope’s focal plane, which may
come either from the sky or the dot pattern of the GCU mask. Depending on whether we are
characterising the behavior of the POA as a measurement device (objective 1) or simulating
measurements of the pointing error (objective 2), we will use a different sequence of composed
coordinate transforms (henceforth transform pipelines):

• The POA pipeline (TPOA), which translates coordinates in the telescope’s focal plane to
coordinates in the POA detector. It will be used to simulate the results of the pointing
error measurement process, and

• The pointing error pipeline (Tε), which translates coordinates in the telescope’s focal
plane to coordinates in the relayed focal plane as measured by the POA.

6



2.4 Transform pipelines 2 OPTO-MECHANICAL MODEL

These pipelines, at the same time, can be further decomposed in two sets of transforms: a
shared set (namely the common path) and a pipeline-specific set.

Figure 7: Block diagram of the transform pipelines. The POA pipeline (circled in purple dashed
line) considers the light detected in the POA’s focal plane (potentially the WFS detector plane).
The pointing error pipeline (circled in green dashed line) considers light arriving at the relayed
focal plane plus measurement uncertainties.

Both pipelines differ not only in the destination plane, but also in the interpretation of the
coordinate change. While the POA pipeline models the physical behavior of light beams as
they travel through the instrument, the pointing error pipeline also models the measurement
uncertainty of the true location of bright objects in the relayed focal plane. This extra contri-
bution is necessary as the measurement of the central location of a star (or a GCU mask dot)
is performed by a fitting algorithm that can be affected by the resolution of the detector and
the shape of the measured object.

2.4.1. Common path

In both cases, the optical path is shared up to the relayed focal plane in the Natural Guide
Star Sensors System (NGSS). As previously mentioned, each pipeline can be broken down into
a common transform and a pipeline-specific transform as:

TPOA = T sPOA(θ, φ) ◦ Tc (2.4.1)

Tε = T sε ◦ Tc (2.4.2)

In this path, the light from the telescope’s focal plane is relayed to the NGSS by the optics
of the Focal Plane Relay Subsystem (FPRS) with an ideal magnification ratio of 1:1. Given the
current knowledge of the instrument and its integration with ELT, the following contributions
were considered:

7



2.4 Transform pipelines 2 OPTO-MECHANICAL MODEL

Table 2: Random error contributions in Tc

Symbol Description Sampling time
∆xG GCU X axis misalignment (only if the GCU is inserted) Manufacturing
∆yG GCU Y axis misalignment (only if the GCU is inserted) Manufacturing
∆ωIRW Angular error of the instrument’s derotator Calibration
∆xN X-axis misalignment of the NGSS structure Manufacturing
∆yN Y-axis misalignment of the NGSS structure Manufacturing

Figure 8: Modelisation of the common path.

The common transform Tc can be therefore expanded as follows:

Tc = T (∆xN) ◦R(−∆ωIRW) ◦ F ◦ T (∆xG) (2.4.3)

Where T is a translation transform by a given offset and R is a counter-clockwise 2D rotation
transform perfectly described by a rotation matrix. F is the FPRS aberration transform which
must be constructed by interpolation of the results of existing simulations of the FPRS optics.
Details on the construction of the FPRS transform can be found in appendix B.

2.4.2. POA pipeline

The subpath specific to the POA pipeline relays a small section of the technical field in
the surroundings of the POA’s head of the technical field to the POA’s detector plane, and is
represented by T sPOA(θ, φ). This subpath is dependent upon the specific POA configuration,
which is completely determined by its axis angles θ, φ. An object in the relayed focal plane
whose coordinates equals to those of the center of the POA’s head at a given θ, φ configuration
should appear (in the error-free case) exactly in the center of the detector plane (xd = 0, yd = 0).
As the detector is expected to move together with the arm, the detector plane will experience
a rotation of angle φ− θ around its center with respect to the relayed focal plane.

The optics responsible for relaying the light between the POA’s head and the POA detector
belong to a component named Low-Order Optical Bench (LOB). For the sake of this study,
it is assumed that the magnification ratio of the LOB optics is 1. This assumption could be
revisited as the LOB design evolves in future versions of the model.

The random contributions to the pointing error considered in this subpath are:

8



2.4 Transform pipelines 2 OPTO-MECHANICAL MODEL

Table 3: Fixed and random variables in T sPOA(θ, φ)

Symbol Description Sampling event
Bθ Bit resolution of the primary axis encoder Fixed
Bφ Bit resolution of the primary axis encoder Fixed
qθ Quantisation error of the primary axis encoder Positioning
qφ Quantisation error of the secondary axis encoder Positioning
∆θ Angular error of the primary axis servomotor Positioning
∆φ Angular error of the secondary axis servomotor Positioning
eR Arm length tolerance Manufacturing
∆R Arm length instability (integrated) Positioning
∆ρ Isotropic positioning errors (integrated) Positioning

Figure 9: Modelisation of the POA path

T sPOA(θ, φ) can be further decomposed into the following transforms:

T sPOA(θ, φ) = S(m) ◦R(φ̃− θ̃) ◦ T (−x̃θ,φ) (2.4.4)

Where R is the 2D counter-clockwise rotation transform and T the translation transform.
S is a scale transform that depends on the magnification ratio m from the LOB optics. θ̃, φ̃ are
the simulated angles of the POA axes, which are connected to the requested θ, φ angles by:

θ̃ =
2π

nθ

(⌊nθ
2π
θ
⌋

+ qθ

)
+ ∆θ (2.4.5)

φ̃ =
2π

nφ

(⌊nφ
2π
φ
⌋

+ qφ

)
+ ∆φ (2.4.6)

with n the number of discernible encoder intervals of each axis. This number is related to
the bit resolution (B) of each encoder by n = 2B.

On the other hand, the simulated POA’s head center x̃θ,φ = (x̃, ỹ) is obtained from θ̃, φ̃ as:

x̃ = R̃cos θ̃ −Rcos (φ̃− θ̃) + ∆ρcos α (2.4.7)

ỹ = R̃sin θ̃ +Rsin (φ̃− θ̃) + ∆ρsin α (2.4.8)

with α following a uniform distribution between 0 and 2π and R̃ = R + eR + ∆R.

2.4.3. Pointing error pipeline

This pipeline is used to generate simulated measurements of the pointing error in the tech-
nical field. By taking advantage of the fact that the magnification ratio between the telescope’s
focal plane and the relayed focal plane is 1, the pointing error can be defined as:

ε = Tε[x]− x (2.4.9)

Which can be used to train an appropriate corrective model for the systematic part of the
pointing error.

9



2.5 Kinematics of the POA 2 OPTO-MECHANICAL MODEL

The subpath specific to this pipeline is represented by the transform T sε [x] and simulates the
uncertainties of measuring the location of an object in the relayed focal plane. The calculation
of T sε [x] is a multi-step process that involves:

1. Calculating the nominal arm configuration θ, φ that centers the head around x as de-
scribed in appendix A.

2. Simulating x̃θ,φ from the requested θ, φ as described in equations 2.4.7 and 2.4.8, and

3. Simulating the measurement error by the fitting algorithm

Figure 10: Modelisation of the pointing error subpath.

The set of considered error contributions is the same as for the POA pipeline, plus the
measurement error of the fitting algorithm. Nevertheless, as many details of the measurement
process are yet to be decided, the exact error distribution of the fitting algorithm is currently
unknown and therefore not included in the current iteration of the model. This reduces the
definition of T sε to:

T sε [x] = x̃θ(x),φ(x) (2.4.10)

And, in the case we are evaluating the performance of certain corrective model C such that
xc = C[x]:

T sε [x] = x̃θ(xc),φ(xc) (2.4.11)

2.5. Kinematics of the POA

The third objective of the model was to enable comparisons between different calibration
strategies. Since one of the figures of merit of a calibration strategy is how fast it completes
the measurement of a set of points, we need to take the kinematics of the POA into account.

The estimation of the calibration time involves knowing the exact sequence of POA config-
uration requests and the behavior of the servomotor of each axis. The current iteration of the
model assumes that the kinematics of the POA is purely governed by the two error contributions
detailed in table 4.

Table 4: Random parameters of the POA kinematics

Symbol Description Sampling time
ωθ Maximum sweep speed of the primary axis servomotor Positioning
ωφ Maximum sweep speed of the secondary axis servomotor Positioning

As a first order approximation, the current model assumes that both servomotors can rotate
immediately at their maximum sweep speed until they reach their desired angle. This implies
that the completion time of a given ∆θ,∆φ sweep is given by:

t = max

(
∆θ

ωθ
,
∆φ

ωφ

)
(2.5.1)
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A noteworthy consequence of this behaviour is that, since both servomotors run indepen-
dently and in parallel, one axis may reach its desired angle way before the other. When this
happens, the sweep transitions from two servomotors running to only one, causing a sudden
variation both in sweep speed and direction. The transition point should be reflected as a small
cusp in the POA path.

Figure 11: Traversal of 10 calibration points. The POA path from the first point (p1, marked
in red) to the last (p10) exhibits cusps as one axis reaches its destination angle before the other.
This effect is particularly noticeable in path sections p1 − p2, p5 − p6 and p7 − p8.

Although we do not expected that the true kinematics deviate much from this description, a
complete model should include startup times, the effects of the POA’s inertia, angle correction
near the desired position and potential memory effects that may depend on past histories of
arm displacements.

2.6. Pointing model

The goal of any calibration strategy is to gather the necessary data to fit a pointing model,
whose performance analysis also falls within the scope of this study. This model consists of a
certain 2D transform C that attempts to mimic the behavior of Tε all over the technical field,
minimising the residual r = ‖Tε[x]− C[x]‖. In a similar way as we did for Tε[x] in equation
2.4.9, C can be expressed in terms of the pointing error model ε′(x) as:

C[x] = x + ε′(x) (2.6.1)

11
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and therefore the residual can also be written as:

r = ‖ε′(x)− ε(x)‖ (2.6.2)

In order to exploit the maximum resolution achievable by the telescope (∼ 8 mas), the
pointing model must ensure that r < 10 µm for all points in the relayed focal plane.

In real life operation, C is found during calibration by measuring the position of the GCU
mask dots by means of the POA detector. As the time available for calibrations is limited,
a good pointing model C should not only minimise the residual, but also the time required
to gather the necessary data, which is directly connected to the number of points used for
calibration. Consequently, we will favour models that require fewer points.

With these considerations in mind, we decided to express the pointing model C in terms of
the complex Zernike expansion of the pointing error [9]. The rationale behind this approach is
twofold:

• Zernike expansions are familiar to optical engineers when it comes to describing optical
aberrations, and

• the first radial orders describe aberrations that can be connected to common opto-
mechanical effects (misalignments, rotations...).

Figure 12: Complex Zernike polynomials up to radial order n = 1. Z0
0 can be used to model field

misalignments, Z−1
1 changes in the aspect ratio and Z1

1 both changes in the global magnification
ratio and field rotations (i.e. plate scale and field orientation).

There are some additional benefits derived from using Zernike polynomials: as they conform
a complete orthogonal basis on the unit circle [5], coefficients of a Zernike expansion can describe
properties of the aberration without redundancy or overlap of information between them (which
provides insight on the nature of the aberrations). On the other hand, the algebra of a 2D
Zernike expansion is greatly simplified when complex coefficients are used. In particular, if we
identify 2D vectors with complex scalars as:

x = Re[z]êx + Im[z]êy, z ∈ C (2.6.3)

Then, the pointing error model can be expanded as:

ε′(z) =
N∑
n=0

n∑
i=0

a−n+2i
n Z−n+2i

n

( z
R

)
(2.6.4)
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Where amn is the complex coefficient multiplying the complex Zernike polynomial Zm
n and

N is the maximum radial order of the expansion. As Zernike polynomials are defined on the
unit circle, z must be normalised prior to the evaluation by the technical field radius R. Note
that for a maximum radial order N we need to fit J = (N + 1)(N + 2)/2 complex coefficients.

When Zernike polynomials are used to build certain vectors and matrices, it is customary
to refer to the first J polynomials. In these cases, it is convenient to map the two indices m,n
of the Zernike polynomials to a single integer index j ≥ 0. For the sake of standarisation, we
chose OSA/ANSI indices[2], which relate j and m,n by:

j =
n(n+ 2) +m

2
(2.6.5)

2.6.1. Model fit

Fitting the aforementioned pointing model requires deciding both the maximum radial order
of the model (N) and the calibration pattern P = {p0, p1, ...} ⊆ G ⊂ C, with G the set of
locations of the GCU mask dots in complex form. Ideally, we would need as many points as
free parameters: Q = J = (N +1)(N +2)/2, with Q = Card(P ). However, since measurements
are affected by noise, it could be convenient to introduce certain redundancy by choosing more
than J calibration points.

Once the error measurement vector ε̃ = (ε̃(p0), ε̃(p1), · · · , ε̃(pQ−1))T ∈ CQ has been ob-
tained, one can pose the model fitting problem as finding a = (a0, a1, · · · , aJ−1)T ∈ CJ such
that: 

Z0

(
p0
R

)
Z1

(
p0
R

)
· · · ZJ−1

(
p0
R

)
Z0

(
p1
R

)
Z1

(
p1
R

)
· · · ZJ−1

(
p1
R

)
...

...
. . .

...
Z0

(pQ−1

R

)
Z1

(pQ−1

R

)
· · · ZJ−1

(pQ−1

R

)
×


a0

a1
...

aJ−1

 =


ε̃(p0)
ε̃(p1)

...
ε̃(pQ−1)

 (2.6.6)

The coefficient matrix of this system of equations is referred to as the collocation matrix[7],
and it is denoted by Z(P ). When Q > J the system is generally inconsistent due to the
measurement noise. Nevertheless, a solution can still be found if we reformulate it as an
optimisation problem:

a = argmin
a
‖Z(P )a− ε̃‖2 (2.6.7)

The quality of the calibration pattern P is given not only by the number of points in it, but
also by how evenly it samples the technical field. This is directly reflected in the reduction of
the condition number of Z(P ), indicating higher robustness against measurement noise.

2.6.2. Calibration strategies

A calibration strategy is the choice of a calibration pattern P along with the order in which
it should be traversed that ensures a calibration residual below 10 µm. A good calibration
strategy is a trade-off between the quality of the calibration pattern and the time required to
measure it. Since finding this trade-off is non-trivial, different calibration patterns and orderings
should be tested. In the current iteration of the model, we propose three calibration patterns:

• Random (i.e. calibration points are chosen randomly from G).

• Spiral (closest GCU points to the spiral pattern described in [3]).

• Optimal Concentric Sampling (closest GCU points to the pattern described in [7]).
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Finding the ordering that minimises the calibration time is a particular case of the Traveling
Salesman Problem and can only be addressed via exhaustive search of all the Q! possible paths.
Instead, we propose two heuristics: as-is (traversing the points in a fixed arbitrary order), and
closest neighbour (the next point to be traversed is the closest to the last one in infinity-norm
distance).

3. Design and implementation

The resulting application must be understood as a prototype that will eventually be used in
the observatory during operation. As such, it should not only address the functional require-
ments selected for this first iteration, but also foresee future extensions of the model by other
contributors until then. The goal of the project is to provide the observatory with a useful
tool to optimise the calibration strategies of the instrument. Its architecture should be easily
upgraded to account for a more realistic description of the ”as-built” instrument.

3.1. Software requirements

The simulator will consist of a series of programs which, upon successful execution, will
produce different simulation products in the form of data files and graphs. From the perspective
of functional requirements, the prototype must produce the following results:

1. Heatmaps of the pointing error in the relayed technical field.

2. Priors of the coefficients of the pointing model via Monte Carlo sampling.

3. Curve of residuals for different calibration strategies.

4. Heatmaps of the pointing error residual after applying the pointing model.

5. Time plots of POA’s operation for different calibration strategies.

In addition to the goals described in section 2, the design must be aware of the incomplete-
ness of the model. In particular, we must assume that other programmers with varying sets of
skills will eventually be involved in the project. Also, as other use cases may be identified in the
future (e.g. integration with the observatory’s control software) proper component decoupling
will be necessary. All this translates to the following set of non-functional requirements (NFR):

1. The programming language of the project must be the result of a trade-off between
performance and popularity.

2. The architecture of the application must be decided beforehand.

3. The code of the entry point of the simulator (i.e. the executable programs) must be
decoupled from the simulator’s logic.

4. Implementation must prioritise maintainability before performance.

5. Simulator must work out of the box, even if no parameters are provided.

6. Exhaustive code and application documentation must be provided.

NFR 1 is satisfied by choosing Python 3 + NumPy. This is a popular combination among
physicists and engineers that enables high-performance computing with tensors of arbitrary
rank. Additionally, the functional requirements of the simulator can be fulfilled by a component-
based architecture (NFR 2) which must be properly documented (NFR 6) prior to the coding
phase.
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3.2. Simulator architecture

NFRs 2 and 3 motivated a component-based architecture. The goal of this paradigm is to
decompose the design of the application into individual functional or logical components that
represent well-defined interfaces containing classes. It is the object-oriented equivalent of the
well-known programming principle of divide-and-conquer.

In order to ease future code reuse, terminal components (i.e. those representing executable
scripts) are separated from non-terminal components, with the latter being placed inside a
Python package named harmoni pm.

Figure 13: Component diagram of the project.

The responsibilities held by each component are summarised in the following table:

Component Responsibilities
Calibration Measurement and correction of pointing errors
Common Utility module
ImageGen Generation of light sources as flux fields
ImageSampler Sampling functions defined in R2

Optomechanics Instrument model
POASim POA model
Tolerance Random quantity handling
Transform 2D coordinate transforms
Zernike Generation and evaluation of complex Zernike polynomials
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Terminal components PointingSim and SGSim refer to the scripts that may be executed
by the user. PointingSim will be in charge of producing the results enumerated in 3.1, while
SGSim will be the prototype of detector simulator that will be used in the future to characterise
the behavior of the POA. Although feature-limited and not used in this work, current progress
on the latter is detailed in appendix D.

3.3. Source code

The source code of the simulator can be accessed from its public GitHub repository at
https://github.com/BatchDrake/harmoni-pm, while the documentation of the internal API can
be accessed at https://actinid.org/harmoni-pm. The usage of Python 3 as the project’s pro-
gramming language should ensure portability to other platforms. However, at the current stage
of development, it is recommended to run the code in Unix-like operating systems.

Project files are structured so that every component of the simulator is kept in a separate
directory under the harmoni pm package, while executable scripts are kept at root level of the
project directory.

In order to run the different executable scripts, the user must ensure the following pip

dependencies are met: chardet, matplotlib, numpy, pandas, Pillow, Pint, seaborn, scipy,
skyfield, uncertainties

4. Results and applications

This section details the results produced by simulations of different aspects of the instru-
ment. Final values used for the parameters of the opto-mechanical model are as follows:

Table 5: Values of the opto-mechanical models used in the simulations, as specified in
harmoni.ini. Conventions used for value representation are as in table 7.

Section Key Symbol Type Value Reference
fprs desc file N/A S (file path) "FPRS distortion map.txt" (default) N/A
gcu point.separation hp R (metres) 15× 10−3 Table 1
gcu point.diameter Dp R (metres) 150× 10−6 Table 1
gcu point.flux Fp R (SIFU) 10−3 Table 1
gcu mask.x0 x0 R (metres) 0 Table 1
gcu mask.y0 y0 R (metres) 0 Table 1
gcu mask.diameter DM R (metres) 0.39 Table 1
gcu alignment x0 ∆xG D (length) 0± 5 µm (N) Table 2
gcu alignment y0 ∆yG D (length) 0± 5 µm (N) Table 2
irw angle bias ∆ωIRW D (angle) 0± 15” (N) Table 2
ngss alignment x0 ∆xN D (length) 0 m (δ) Table 2
ngss alignment y0 ∆yN D (length) 0 m (δ) Table 2
poa encoder[theta].qerr qθ D (no dim.) 0.5± 0.5 (pp) Table 3
poa encoder[theta].bits Bθ I 21 Table 3
poa encoder[theta].err ∆θ D (angle) 0± 1◦ (N) Table 3
poa encoder[theta].speed ωθ D (ang. freq.) 1◦/s (pp) Table 4
poa encoder[phi].qerr qφ D (no dim.) 0.5± 0.5 (pp) Table 3
poa encoder[phi].bits Bφ I 21 Table 3
poa encoder[phi].err ∆φ D (angle) 0± 1◦ (N) Table 3
poa encoder[phi].speed ωφ D (ang. freq.) 1◦/s (pp) Table 4
poa radius eR D (length) 0.2± 10−6 m (pp) Table 3
poa arm instability ∆R D (length) 0 m (δ) Table 3
poa position error ∆ρ D (length) 0 m (δ) Table 3

Although the opto-mechanical model is expected to be refined prior to its final integration in
the observatory, some of its simulation products have direct application in terms of calibration
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strategy. In particular, we provide a thorough comparison of the performance of different cali-
bration strategies, providing strong evidence of the superiority of the OCS pattern with closest
neighbour traversal. These results are expected to be included in the technical documentation
of the instrument with the aim of guiding the design of the calibration control software.

Model-limited results are also included (like pointing error heatmaps before and after ap-
plying the pointing model). Although these results would be revisited in future phases of the
instrument development, they already provide useful insight on the effects of using pointing
models of different radial orders.

4.1. Study of the pointing model

4.1.1. Uncorrected error heatmap

One of the questions we wanted to answer regarding the current model was which was the
main contribution to the pointing error. In doing so, we evaluated ε̃ in the whole relayed focal
plane as seen by the POA using PointingSim’s subcommand errormap, obtaining a maximum
error of around 200 µm (with typical values around 100 µm). This value surpasses the goal of
10 µm by more than one order of magnitude, and it has been tracked to the optical aberrations
inside the FPRS.

4.1.2. Radial order of the pointing model

Following, we wanted to know whether complex Zernike polynomials were a good choice for
both optical and mechanical aberrations, and what was the minimal radial order (N) required to
describe them with an error below 10 µm. For this purpose, we simulated a full calibration (i.e.
comprising all possible test points) fitting the coefficients of several complex Zernike expansions
with N ranging from 1 to 4. The total number of coefficients (J) fitted in each case is related
to the radial order by J = (N + 1)(B + 2)/2.

The heatmap represents the residual as defined by equation 2.6.2. Note that for the case
N = 1, only displacements, rotations and changes in aspect ratio can be modelled:
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We see that although the goal accuracy is achieved when N = 2 (J = 6), we still observe
structure in the heatmap residual. This structure disappears at higher orders, and the residual
is found to be lower-bounded by a noise floor at r = 1.5 µm. In the current iteration of the
simulator, this floor is dominated by the angular error of the POA encoders (σ∆θ = σ∆φ = 1 as).

We therefore conclude that there are two candidate configurations of the pointing model,
one with N = 2 and other with N = 3. Radial orders below 2 are too simple to meet the
r < 10 µm goal, while radial orders above 3 do not provide significant improvements of the
residual. This tie can be broken by making a trade-off between model accuracy and calibration
time.

4.2. Priors of the aberration model

PointingSim is able to compute histograms of the coefficients of the pointing model by
simulating multiple calibrations using the maximum number of calibration points. The resulting
histograms of the coefficients of the aberration model can be used to model the priors of the
bayesian formulation of the calibration problem:

p(aj, ...|ε̃i, ...) ∝ p(ε̃i, ...|aj, ...)p(aj, ...) (4.2.1)

where aj, 0 ≤ j < J are the model coefficients, ε̃i, 0 ≤ i < Q the measured errors and
p(ε̃i, ...|aj, ...) the likelihood function, whose exact formulation requires a good understanding
of the measurement process.

For illustrative purposes, we simulated a total of 2 × 104 calibrations over individual real-
isations of manufacture-time values, using all calibration points in the simulated GCU mask.
The results of the simulation shows high statistical independence between coefficients, which
suggests that the bayesian problem may be simplified down to J smaller problems:

p(aj|ε̃i, ...) ∝ p(ε̃i, ...|aj)p(aj), 0 ≤ j < J (4.2.2)
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Full histograms and scatter plot matrices of the simulated coefficients can be found in
appendix E

Figure 16: Typical histogram for a simulated complex pointing model coefficient (a1
1 for Z1

1).
Top left: vector representation of the complex Zernike polynomial the coefficient refers to. Top
right: kernel density estimation of the prior histogram in the complex plane. Bottom left:
marginal histogram of the coefficient’s real part. Bottom right: marginal histogram of the
coefficient’s imaginary part.

4.3. Calibration pattern

One of the results with immediate application comes from the performance analysis of
all calibration patterns with different pointing model orders and numbers of points. This
comparison was performed by fitting aberration models for each pattern (random pattern, spiral
sampling and optimal concentric sampling - OCS) with radial orders 2 (J = 6), 3 (J = 10)
and 4 (J = 15), different numbers of calibration points between 1 and 30 and 50 different
realisations of each pattern. The quantity used for comparison was the median of the 50
mean residuals calculated for each pattern realisation. Error bars represent the maximum and
minimum observed mean error observed in the 50 realisations of the pattern.

Figure 17: Median mean calibration error after fitting up to radial order n = 2.
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Figure 18: Median mean calibration error after fitting up to radial order n = 3.

Figure 19: Median mean calibration error after fitting up to radial order n = 4.

From which it seems that that OCS exhibits a faster reduction of the mean error, closely
followed by the spiral pattern (although with higher dispersion). However, there is still the
possibility of tie for OCS and spiral patterns when the number of calibration points matches
the number of complex coefficients of the pointing model.

One remarkable feature of OCS-based calibrations is the presence of valleys in the median
error when the number of calibration points is triangular (3, 6, 10, 15...). This is expected:
OCS patterns always have the number of points of a complete set of Zernike polynomials up to
certain radial order (which is triangular), and the only way to obtain an intermediate number
is by removing points of an existing complete pattern, affecting its symmetry and therefore its
performance.

It is worth noting that the number of points required to perform a calibration that meets
the r < 10 µm goal (order 10) is much smaller that the number of available dots in the GCU
mask (order 102). Once a full opto-mechanical model is developed, this result may be used
to optimise the design of the GCU mask in order to provide only those dots actually used for
calibration.

4.3.1. Spatial distribution of the calibration residuals

In order to break the apparent tie between the OCS and spiral patterns, we carried a more
detailed study of the residual. To that end, we obtained residual heatmaps for both the spiral
and OCS pattern when Q = J (i.e. when the number of calibration points matches the number
of coefficients of the aberration model), with J = 6 and J = 10. In the J = 6 case, we observed
that the lack of symmetry of the spiral pattern always causes one side of the relayed field to be
undersampled, while OCS calibrations tend to sample the plane more homogeneously:
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Figure 20: Calibration with spiral pattern (left) and OCS (right) up to radial order N = 2
(J = 6). The heatmap represents the Euclidean norm of the 2D residual after calibration.

This effect is exaggerated at higher orders, as the scarcity of sampling points in the edges
of the field causes the aberration model to extrapolate in uninformed ways. In these regions,
the pointing error reaches values comparable to those found in the uncorrected case:

Figure 21: Calibration with spiral pattern (left) and OCS (right) up to radial order N = 3
(J = 10). The heatmap represents the Euclidean norm of the 2D residual after calibration.
The spiral pattern reduces the error near the calibration points but increases it significantly
near the undersampled region. On the other hand, the OCS pattern reduces the error almost
everywhere, to the extent of making the non-systematic contributions of the error noticeable.

From these results, we conclude that OCS performs better than the spiral pattern when
the number of calibration points equals to the number of coefficients of the pointing model.
Additionally, when a model with radial order N = 3 is used, calibrations are far from the
r < 10 µm goal due to the presence of highly undersampled regions. This renders OCS the
only viable alternative. Nevertheless, the optimality of this result could still be challenged by
error contributions not yet considered in the instrument model.

4.4. Sampling strategy

Next, we addressed the problem of finding the best calibration strategy, i.e. finding the path
that traverses all calibration points in the shortest possible amount time. Since this problem
is a particular instance of the Travelling Salesman Problem (TSP)[1] with a distance is given
by the time the pick off arm takes to move from the departure configuration (θ1, φ1) to the
destination configuration (θ2, φ2), it is NP-complete and the optimal solution implies testing
all Q! point permutations which, for the Q = J = 10 case, amount to more than 3.5× 106.

Instead, we tested a heuristic based on finding the closest uncalibrated point (in L∞ distance
of its θ, φ coordinates) iteratively. In the Q = 10 case, we observed a speedup from 600 s to
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350 s (which supposes a reduction of 40% in calibration time). The simplicity of the heuristic,
along with its dramatic reduction of the calibration time justifies its usage when Q� 10.

Figure 22: Time plot for a typical non-optimised OCS calibration with 10 calibration points.

Figure 23: Time plot for a typical optimised OCS calibration with 10 calibration points.

5. Conclusions and future work

In this work, we addressed the problem of modelling the contributions to the pointing error
as observed by HARMONI. Due to the inherent complexity of the instrument, we selected a
subset of contributions that we considered to be the main drivers of this error. This resulted in a
preliminary model whose formalisation foresaw future refinements. These refinements may take
the form of better characterisation of the current contributions or the inclusion of contributions
not yet considered in the model.

The model was put into practice by a set of Python packages and scripts that simulated
different aspects of the instrument, including uncalibrated pointing errors, the performance of
different calibration strategies and pointing model configurations and pointing model residuals.
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These software components should be considered prototypes that aim to evolve to be eventu-
ally exploited by the observatory during operations. This evolution may be carried by other
developers as well, and therefore the extensibility of the software was a key principle during its
design phase.

Although many properties of the instrument components were not considered in this stage,
the current software architecture facilitates the extension of the model as more details of the
design are constrained. This did not prevented the simulator from producing results that can
be applied in the future stages of development of the instrument:

• Assuming the FPRS model is realistic, we conclude that an aberration model with N = 2
(6 complex coefficients) fulfills the positioning accuracy of 10 µm. If an aberration model
with N = 3 (10 complex coefficients) is fitted, the residual plummets below the amplitude
of the mechanical instabilities. The choice between both alternatives should be the result
of a trade-off between positioning accuracy and calibration time.

• We provided evidence for the superior performance of the OCS pattern over the traditional
spiral pattern when the number of calibration points matches the number of complex
coefficients of the aberration model, especially at higher radial orders. Nonetheless, this
superiority is only significant when the number of coefficients of the pattern is a triangular
number (i.e. when the pattern is complete).

• We also provided priors for the coefficients of the aberration model which, in a worst
case scenario, will provide information on the orders of magnitude of the aberration as
projected in each Zernike polynomial.

• Finally, we concluded that we can speed up the calibration process not only by reducing
the number of calibration points to the number of coefficients of the aberration model, but
also by reordering points in a way that does not involve testing all possible permutations
of the calibration set.

Many simulations have been left for the future due to the lack of time and access to detailed
specifications. In particular, the Secondary Guiding Simulator requires a realistic model of the
LOB optics inside the POA, as well as the properties of the detector used for calibration. Once
formalised and implemented, it will be used to characterise the POA as a measurement device
and repeat the results of the Pointing Simulator.

Additionally, the current model of the GCU mask relies on fixed parameters and does not
reflect is final design. The future refinements of the model must address this issue, as well as
the possibility of performing simulations of the POA with other illumination sources than the
GCU (i.e. natural guide stars).

Finally, as the number of points needed for calibration is much smaller than the number
of dots in the GCU mask, optimisations of the latter should be explored. These optimisations
may take the form of different GCU mask designs that reflect the distribution of points that
are relevant from the perspective of the calibration process.
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A DETERMINATION OF THE POA CONFIGURATION

A. Determination of the POA configuration

In order to perform a measurement of a point in the relayed focal plane, the (x, y) co-
ordinates of the point must be translated first into certain POA configuration (θ, φ). The
problem of finding this configuration is degenerate: there are always at least two different POA
configurations that theoretically fall into the same relayed focal plane point.

Figure 24: Degeneracy of the POA configuration problem. Two different configurations of the
POA end up in the same point of the relayed focal plane.

While this degeneracy can be beneficial (it provides us with two alternatives to reach certain
point in the relayed focal plane, potentially reducing the calibration time), the current iteration
of the model breaks the degeneracy by accepting only positive secondary axis angles.

We find the POA angles (θ, φ) in two steps. In a first step, the desired (x, y) pair is converted
to polar coordinates (ρ, α). We find φ by provisionally leaving θ set to 0, so that the head of
the POA is at the same ρ as the desired point (figure 27).

In this configuration, the dependency of ρ2 on φ can be written as:

ρ2 = R2sin2φ+R2(1− cos φ)2

If we normalise ρ by R:

ρ2

R2
= sin2φ+ 1 + cos2φ− 2cos φ = 2(1− cos φ)

we can find φ by solving the equation:

cos φ = 1− ρ2

2R2

We can see that both φ and −φ are solutions to the equation. We break this degeneracy by
arbitrarily choosing the positive solution.
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A DETERMINATION OF THE POA CONFIGURATION

Figure 25: Calculation of φ.

In a second step, we find θ by taking into account that the previous adjustment of φ has
placed the arm’s head halfway the desired angle α by an amount β:

Figure 26: Calculation of θ from β.

where tan β is given by:

tan β =
sin φ

1− cos φ

The complete transform is therefore given by:

ρ =
√
x2 + y2 φ = arccos

(
1− ρ2

2R2

)
α = arctan(y, x) θ = α− arctan

(
sin φ

1− cos φ

)
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B FPRS TRANSFORM

B. FPRS transform

The FPRS transform appears in the common part of the model coordinate transforms, and
represents the aberrations introduced by the FPRS optics. This transform is constructed by
interpolation from the results of a simulation performed by the lead optical engineer of the
FPRS at UK ATC, using the commercial software OpticStudio[11]. These results take the form
of a plain text file in which each line represents how much a ray is deviated from its departure
position in the input focal plane as it traverses the optics of the FPRS.

Figure 27: Aberration caused by the FPRS, exaggerated 25 times and simulated in a 400 ×
400 mm grid of 10 mm-spaced points. True location of points are painted in black. Aberrated
(displaced) points are painted in red.

B.1. Forward transform

The test points in this simulation were arranged in a fixed-step square grid (∆x = ∆y = h)
within the 200 mm radius of the technical field. In this grid, the x = (x, y) coordinates of
each point could be calculated from two integer indices i, j as xi = x0 + ih and yj = y0 + jh.
This arrangement motivated the following bilinear interpolation of the pointing error between
consecutive sampling points:

ε(x) ≈ (1− β) [(1− α)xij + αxi+1,j] + β [(1− α)xi,j+1 + αxi+1,j+1] (B.1.1)

where α = x−xi
∆x

, β = y−yi
∆y

and xij is generally easy to find. From this interpolation, one
can construct the forward FPRS transform by addition:

F [x] = x + ε(x) (B.1.2)

B.2. Backward transform

While the interpolated forward FPRS transform can be trivially evaluated, this is not true
for the backward transform F−1[x]. In the forward transform, departure points are regularly
spaced and it is easy to find the vertices of the square in which the 4 surrounding sampling
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points are located. In the backward transform, this square is distorted into a trapezoid, and
the location of its vertices cannot be known efficiently unless barely-vectorisable operations are
used.

In order to prevent a performance bottleneck in the code, we will settle for an approximation
based on the Taylor expansion of the backward transform. This approximation will let us obtain
a measure of the backward pointing error in the departure points.

Let us assume that F−1[x] can be written as:

F−1[x] = x + εb(x) (B.2.1)

where εb is the backward pointing error and it is expensive to calculate, and let εij = ε(xij). If
we evaluate the backward pointing error in the displaced sampling point xij + εij, we obtain:

εb(xij + εij) = εb[F (xij)] = F−1 ◦ F (xij)− F (xij) = xij − F (xij) = −εij (B.2.2)

which tells us that the departure point is at a vector distance εij in the opposite direction.
Now, since ε� h (this was confirmed by inspection of the simulation results), we can approx-
imate εb(xij) by its Taylor expansion around the displaced point x̃ij = xij + εij up to order 1:

εb(x) ≈ εb(x̃ij) + (JF−1 − I)(x̃ij)(x− x̃ij) (B.2.3)

with JTb the Jacobian matrix of the backward transform and I a 2× 2 identity matrix. We
showed in equation B.2.2 that εb(xij +εij) = −εij. If we evaluate εb(x) in the departure points
instead of the displaced points, we get:

εb(xij) ≈ −εij − (JF−1 − I)(x̃ij)εij (B.2.4)

The order 1 term provides information on how the displacement evolves in each perpen-
dicular direction. Since any 4 contiguous εij are expected to be of the same order of mag-
nitude (resulting in a Jacobian close to the identity) and much smaller than the sampling
step, (JF−1 − I)(x̃ij)εij is negligible compared to εij. We can therefore approximate εb in the
departure sampling points safely as:

εb(xij) ≈ −εij (B.2.5)

which can be used to build another bilinear interpolator as illustrated in the forward case.

C. Software details

C.1. Configuration file

Model configuration is stored in a file named harmoni.ini, and the code will attempt to
load it from the working directory in which it is executed. The configuration file contains model
parameters and references to other files required by the simulation.

C.1.1. Format

harmoni.ini consists of lines of key-value pairs grouped into sections. Section names pre-
cede the set of key-value pairs inside the section and are enclosed in square brackets. Key
names and values are separated by an equals sign (=), with the former admitting alphanumeri-
cal characters, dots, dashes and underscores. The file accepts single-line comments prefixed by
a sharp symbol (#).
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Values admitted by harmoni.ini are all Python 3 literals plus other key names (in that
case, the value is taken as that of the referenced key). If the key refers to a random variable, a
string (enclosed by double quotes) with the following format must be provided:

"value +/- dispersion units (distribution)"

In which value is the nominal value of the variable (usually the mean), dispersion is
certain spread measure of the variable distribution, units is any unit string supported by the
Pint library and distribution is a string that describes the statistical distribution followed
by the variable.

The meaning of dispersion depends on the distribution it refers to. For instance, "5
+/- 0.1 cm (normal)" describes a Gaussian random variable with mean 5 and FWHM 0.2,
expressed in centimetres. The following table summarises both the supported distributions and
the interpretation of their dispersion measure:

Table 6: Statistical distributions accepted in harmoni.ini. In this table, µ refers to value and
θ to dispersion.

Name Dispersion measure Equivalent distribution
normal, gauss or gaussian 1/2 of FWHM N(µ, 32θ2ln 2)
uniform, flat or pp 1/2 of peak-to-peak value U(µ− θ, µ+ θ)
diracdelta N/A δ(x− µ)

C.1.2. Configuration keys

The following table contains all the configuration keys, sections and data types that may
appear in harmoni.ini. If any of these keys is not provided, it will be treated as it was declared
with its default value.

Variable type may be R (real value with units), D (statistical distribution with dimensions),
I (integer) or S (printable string). Random variables are indicated by their distribution between
parentheses: N for normal distributions, pp for uniform distributions and δ for distributions
with no uncertainty (fixed).
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Table 7: Configuration keys accepted by harmoni.ini. SIFU stands for Système International
Flux Units (W Hz−1m−2).

Section Key Symbol Type Default Reference
fprs desc file N/A S (file path) "FPRS distortion map.txt" N/A
gcu point.separation hp R (metres) 15× 10−3 Table 1
gcu point.diameter Dp R (metres) 150× 10−6 Table 1
gcu point.flux Fp R (SIFU) 10−3 Table 1
gcu mask.x0 x0 R (metres) 0 Table 1
gcu mask.y0 y0 R (metres) 0 Table 1
gcu mask.diameter DM R (metres) 0.4 Table 1
gcu alignment x0 ∆xG D (length) 0 m (δ) Table 2
gcu alignment y0 ∆yG D (length) 0 m (δ) Table 2
irw angle bias ∆ωIRW D (angle) 0 rad (δ) Table 2
ngss alignment x0 ∆xN D (length) 0 m (δ) Table 2
ngss alignment y0 ∆yN D (length) 0 m (δ) Table 2
poa encoder[theta].qerr qθ D (no dim.) 0.5± 0.5 (pp) Table 3
poa encoder[theta].bits Bθ I 11 Table 3
poa encoder[theta].err ∆θ D (angle) 0± 1◦ (pp) Table 3
poa encoder[theta].speed ωθ D (ang. freq.) 1◦/s (pp) Table 4
poa encoder[phi].qerr qφ D (no dim.) 0.5± 0.5 (pp) Table 3
poa encoder[phi].bits Bφ I 11 Table 3
poa encoder[phi].err ∆φ D (angle) 0± 1◦ (pp) Table 3
poa encoder[phi].speed ωφ D (ang. freq.) 1◦/s (pp) Table 4
poa radius eR D (length) 0.2± 10−6 m (pp) Table 3
poa arm instability ∆R D (length) 0± 1 µm (N) Table 3
poa position error ∆ρ D (length) 0 m (δ) Table 3

C.2. Usage

The entry point of this project consists in two executable command-line scripts that exploit
the features implemented inside the harmoni pm package. pointingsim.py performs different
simulations related to the calibration of the pointing error. sgsim.py is the secondary guiding
simulator, and attempts to characterise the behavior of the POA as a measurement device.

C.2.1. pointingsim.py

The simulations executed by pointingsim.py are organised in test types, and simulation
products can be produced in form of console output, data files and graphs. The command
syntax is as follows:

$ ./pointingsim.py -t TEST_TYPE [OPTIONS]

where TEST TYPE specifies the simulation to run, which can be one of the following:
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Table 8: Test types accepted by pointingsim.py.

Test type Description
errormap Simulates the uncorrected pointing error in the technical field

in the form of a heatmap.
prior Calculates histograms of the pointing model coefficients based on

manufacturing tolerances.
calplot Computes the median pointing error curves for different calibration

strategies and point counts.
calmap Computes the heatmap of the residual after applying a pointing model

obtained from a simulated calibration process.
caltime Computes the calibration time plot for a certain calibration strategy.
caldist Computes histograms of the calibration time for different realisations

of the same calibration strategy.

Tests types are exclusive, and pointingsim.py can only run one of the above at a time.
On the other hand, [OPTIONS] is a list of switches that can be used to tune the execution of a
particular test. From the simulation perspective, the most relevant options are:

Table 9: Optional arguments accepted by pointingsim.py.

Test type Description
-P Plot simulation results using Matplotlib.
-m Overlay the GCU mask dots used for calibration in heatmap plots.
-C Q Set the number of points used for calibration to Q (default: 553)
-N N Sets the number of Monte Carlo simulations to N (default: 1000).
-J J Set the number of coefficients of the pointing model to J . For

realistic models, J should be a triangular number (default: 3).
-S PAT Set the calibration pattern to PAT (random, spiral or ocs). Default

is random.
-s SECT.KEY=VAL Override the configuration key KEY in section SECT with the value VAL.

C.2.2. sgsim.py

The script sgsim.py is the prototype simulator for the POA detector, and should be un-
derstood as the foundation of a full-fledged POA simulator that will be used to obtain the
likelihood function of the point measurement process. As the details of the detector were not
included in the model, this script is a simple detector simulator with free parameters like pixel
geometry and magnification ratio. Future iterations of the model will permit the augmentation
of the features of this script, including the point fitting logic and Monte Carlo simulations of
GCU mask dot measurements.
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Figure 28: Simulation results of the POA detector with different exposition times. The Poisson
nature of the detection process is evident at low exposition times.

The only data product of this script are the simulated images. The command syntax is as
follows:

$ ./sgsim.py [OPTIONS]

where [OPTIONS] are used to set the parameters of the simulated CCD. The options accepted
by sgsim.py are summarised in the following table:

Table 10: Optional arguments accepted by sgsim.py.

Test type Description
-W WIDTH Sets the detector width (in pixels) to WIDTH.
-H HEIGHT Sets the detector height (in pixels) to HEIGHT.
--px-width PXW Sets the pixel width to PXW. Default: 14 µm.
--px-height PXH Sets the pixel width to PXH. Default: 14 µm.
-f MAG Sets the magnification ratio to MAG. Default: 1.
-S SRC Sets the image source to SRC. Default is gcu.
-t THETA Sets the primary axis angle to THETA. Default is 0◦.
-p PHI Sets the secondary axis angle to PHI. Default is 0◦.
-O OVR Sets the oversampling value per pixel dimension. Default is 8.
-e TIME Sets the exposition time. Default is 0, meaning that the image

represents the spatial distribution of the source’s flux density.

D. SGSim theory and implementation

The SGSim component refers to the executable script sgsim.py, which contains the proto-
type implementation of a POA detector simulator. As such, SGSim is not yet ready to produce
usable results. Nonetheless, the core of the integration logic has already been implemented, and
future developers can leverage the existing work to complete the tool. This section provides
the implementation details that must be known prior to any modification of the code.

D.1. Integration theory

We refer by integration to the calculation of the number of photons that arrive to each pixel
in a given period of time, assuming cartain radiative source at the other end of the optical
system. This calculation is implemented by the ImageSampler class (which, at the same time,
inherits from PlaneSampler) and is based on radiative transfer[6].
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The original assumption considered a general radiative source at infinity, fully described by
its radiative intensity I(α, δ) (W m−2sr−1Hz−1 in SI units). Later iterations showed that this
model was overly descriptive, and reduced the required knowledge of the source to its radiative
flux field F (x, y) over certain focal surface (W m−2Hz−1). Although I is still needed to relate
the surface brightness in the sky with a flux in the focal plane, the following reasoning will
assume that I can be converted to F by means of a change of coordinates.

D.1.1. Radiative transfer

Figure 29: Modelisation of the instrument from the perspective of radiative transfer. Energy
from radiative sources at infinity –described by their surface brightness I– is focused on points
of the focal plane.

Let dEt be the energy differential corresponding to the amount of radiative energy coming
from a region in the sky of radiative intensity I and angular size dΩ entering an aperture of
area A in a time dt and a small range of frequencues dν. This quantity can be written as:

dEt = IdΩAcos θdνdt (D.1.1)

Since the field is relatively small, cos θ ≈ 1 for all the rays that fall in the detector. On the
other hand, the amount of energy dEd arriving to a point in the detector at the instrument’s
focal plane will be a fraction of the total energy that entered the telescope due to opacities,
obstructions and aperture stops. This dependence can be written in terms of a dimensionless
efficiency factor β:

dEd = βdEt (D.1.2)

Let F the flux corresponding to the region dΩ that is focused in a small area dS in the focal
plane. The energy differential in the detector will be:

dEd = FdSdνdt (D.1.3)

which allows us to deduce the following expression for the flux in the focal plane:

F = βIA
dΩ

dS
(D.1.4)

from which we see that the flux is both proportional to the surface brightness and dΩ
dS

. The latter
is actually the Jacobian determinant of the coordinate transform between angular coordinates in
the sky and spatial coordinates in the focal plane. If we consider that this coordinate transform
is performed in two steps (i.e. light from a small patch dΩ in the sky travels to a small area in
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the input focal plane dSfp, and from there to a small area in the detector plane dSdp), equation
D.1.4 can be written as:

F = βIA
dΩ

dSdp
= βtelβoptIA

dΩ

dSfp

dSfp
dSdp

= βoptFfp
dSfp
dSdp

(D.1.5)

in which we decomposed the efficiency factor in a telescope contribution βtel and an in-
strument contribution βopt such that β = βoptβtel. Under this formulation, βtelIA

dΩ
dSfp

can be

identified with the radiative flux in the input focal plane (Ffp) after its processing by the tele-

scope optics, and
dSfp

dSdp
with the Jacobian determinant of the coordinate transform between the

input and output focal planes. This determinant is dimensionless as it refers to a transform
between spatial coordinates, and equals to the inverse of the square of the magnification ratio
in the aberration-free case. In the particular case of the FPRS transform, it should remain
close to unity.

Figure 30: Simplified formulation applied to the 1:1 case of the FPRS optics. In this case, and
destination surfaces have the same area, and only the efficiency factor affects the radiative flux.

Ffp may not only represent the radiative flux of the focused image in the input focal plane,
but also the radiative flux field of the GCU mask during calibration. If an image of the sky
is pre-processed in a way that only its flux is considered, we can disregard intensity fields
completely: this is the approach adopted by the current implementation.

Figure 31: Radiative sources are characterised by their focused flux in the input focal plane.

Finally, if we know the quantum efficiency curve of the detector Q(ν) and the pixel area
Ap, we can calculate the electron rate per pixel (in s−1) as:

R = Ap

∫
FQ(ν)

dν

hν
(D.1.6)

from which we implicitly assumed that the detector Nyquist-samples the image plane. The
true number of electrons generated in the integration time ∆t can be modelled as a Poisson-
distributed random variable with a rate λ given by:

λ = R∆t (D.1.7)
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D.1.2. Sky flux and telescope aberrations

In the previous point, we identified βtelIA
dΩ
dSfp

with the flux corresponding to sky sources.

The factor dΩ
dSfp

is the Jacobian determinant of the telescope aberrations and, unlike
dSfp

dSdp
, has

units of inverses of surface area. Since SGSim should also be able to perform simulations with
sky sources, a modelisation of telescope aberrations is needed.

Let Tb(x) = [φ(x), ψ(x)] be the compound backward transform of all the optical elements
in the optical path. In this expression x = xêx + yêy is the position vector of a point over the
focal plane and φ(x) and ψ(x) are two angular coordinates of the corresponding point in the
sky with respect to the telescope pointing and centered in the equator. In this system φ is the
longitude and ψ its latitude. The orthonormal basis êx, êy can be assumed to be conveniently
aligned to the horizontal and vertical directions of the input focal plane of the instrument.

The solid angle differential dΩ = cos ψdφdψ is related to the area differential dS = dxdy in
the input focal plane as:

cos ψdφdψ = det Jbdxdy (D.1.8)

Where Jb is the Jacobian matrix of the backward transform:

Jb =

(
∂φ
∂x

∂φ
∂y

∂ψ
∂x

∂ψ
∂y

)
(D.1.9)

In the paraxial approximation, cos ψ ≈ 1. Jb allows a polar decomposition of the form AR,
where A is a symmetric matrix and R a rotation matrix that can be related to the field
orientation.

In the aberration-free case, we can choose a system of sky coordinates such that φ depends
only on x and ψ depends only on y. This implies that ∂φ

∂y
= ∂ψ

∂x
= 0 and A will be simplified

down to a diagonal matrix:

dΩ

dSfp
= det AR = det A =

∂φ

∂x

∂ψ

∂y
=

1

f 2
(D.1.10)

where f is the focal distance of the telescope. As radial aberrations are introduced, A will lose
diagonality and the determinant will change. This relationship suggests a way to estimate focal
distances from coordinate transforms and measure the degree of aberration in the optics:

E(x) = ||1− f 2det J̃b(x)|| (D.1.11)

with E a dimensionless quality figure that measures how much the aberrations are affecting
the image in a given point x in the focal plane, f the theoretical focal distance and J̃b(x) a
numerical calculation of the Jacobian of the transform in the surroundings of x.

D.1.3. Oversampling

Coordinate transforms must be calculated at least once for every pixel in the detector. If
the detector Nyquist-samples the image plane, it should be enough to measure the flux at a
fixed relative offset in every pixel. However, sub-Nyquist structure may exist in the image plane
and oversampling would be needed to prevent aliasing / Moiré.

For a given oversampling value M , ImageSampler will measure the flux of the image plane
in M2 points inside the pixel surface and calculate the average flux of all of them. The offset of
the sampling point 0 ≤ i, j < M from the bottom left corner of a pixel of width ∆x and height
∆y will be:

p(i, j) =

(
i+

1

2

)
∆x

M
êx +

(
j +

1

2

)
∆y

M
êy (D.1.12)
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D.2. Implementation

From the implementation perspective, flux calculation is decoupled from the generation
of the set of pixels (subpixels) where the flux is evaluated. The former is implemented in the
ImageSampler class (harmoni pm/imagesampler/image sampler.py) while the latter is imple-
mented in the PlaneSampler class (harmoni pm/transform/plane sampler.py). ImageSampler
also takes the sampled flux in each pixel and draws photon counts from a Poisson distribution
(method ImageSampler.save to file). sgsim.py simply constructs an ImageSampler object
according to parameters passed in the command line and spawns the simulation.

D.2.1. Coordinate generation

Generation of subpixel coordinates is vectorised by PlaneSampler and performed in several
steps:

1. Generation of the matrix of row indices. A square matrix rij = i is created as the tensor
product of a numpy.linspace(0, M - 1, M) by a column vector of ones of the same size.

2. Generation of the x offsets. The vector xk = [f(rij)k + 1
2
]δx is created, with f the flatten

operator (which returns a vector of M2 components such that f(rij)k = rk mod M,bk/Mc and
δx = ∆x/M).

3. Generation of the y offsets. The vector yk = [f(rTij)k + 1
2
]δy is created, with δy = ∆y/M .

4. Generation of the coordinate offset vector. The matrix xyk2 is created, such that xyk0 = xk
and xyk1 = yk.

The resulting xy vector is then added to the coordinate of the bottom-left corner of each
pixel to obtain the full list of oversampling points.

D.2.2. Slicing and parallelisation

The integration of the light arriving at h × w pixels with an oversampling of M requires
the calculation of h × w ×M2 coordinate transforms. In addition to the computational cost
of this operation, the memory allocation required by the vectorisation of these operations may
be too big to fit in the computer’s memory. These two problems are addressed by slicing and
parallelisation.

Slicing refers to the process of selecting subsets of pixels in the detector from which inte-
gration operations are vectorised in numpy. The maximum size of a slice is that of a contiguous
square of side HARMONI PLAME SAMPLER SLICE SIZE pixels, currently 128. The actual size of
the slice may be smaller near the right and upper edges of the detector. The total number of
coordinate transforms to perform can be calculated by multiplying the number of pixels in a
slice K by the square of the oversampling M2.

Parallelisation refers to the ability of the software to perform its calculations concurrently
in different execution threads. This is achieved by vectorising the generation of coordinates
in two stages. In a first stage (implemented in PlaneSampler. process slice), matrices of
row indices rij and column indices cij are created using the same strategy as described in the
oversampling implementation, and flattened in order to obtain a ijK×2 matrix of K rows in
which each row represents the row and column indices of the pixels to integrate.

In a second stage, the full coordinate list –including subsampling– is generated from an
initial pixel list ijK×2. This stage is split again into the following steps:
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1. Tiling of the oversampling offset matrix. A matrix p xy consisting of concatenating xy

K times is generated, producing an oversampling offset matrix of KM2 rows.

2. Repetition of the pixel index matrix. Each individual row of the index matrix ijK×2 is
repeated contiguously M2 times, growing the matrix up to KM2 rows (ijKM2×2).

3. Generation of the sampling point matrix. The sampling coordinates are generated by
adding the following matrix to p xy:

∆p xyKM2×2 = ijKM2×2

(
∆x 0
0 ∆y

)
+ 1KM2×2x0 (D.2.1)

where x0 is a position row vector that encodes the physical displacement of the detector.

The full coordinate list is then passed to the virtual method PlaneSampler. process region,
implemented by ImageSampler.

D.2.3. Evaluation

The evaluation of the sampled radiative flux field involves a data reduction due to over-
sampling, as the resulting flux vector must match the original pixel index matrix passed to
process region. The reduced flux vector is evaluated by averaging the values of the flux in

the subpixels belonging to the same pixel:

F̄k =
1

M2

M−1∑
i=0

F [Tb(p xykM+i,0, p xykM+i,1)] (D.2.2)

where Tb is the backward transform, F̄k the reduced flux vector and F the flux function of the
image plane. From this flux, one can obtain the Poisson rate λ (equations D.1.6 and D.1.7)
and simulate per-pixel photon counts.

E. Priors of the aberration model

The following subsections detail the resulting prior histograms of the coefficients of the
aberration model up to radial order n = 3. Scatter plot matrices are presented as well (E.5),
providing evidence for the statistical independence between coefficients.
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E.1. n = 0

E.2. n = 1
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E.3. n = 2
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E.4. n = 3

E.5. Scatter plot matrices

The following scatter plot matrices detail potential correlations between the first 10 pointing
model coefficients. Although a slight correlation between some coefficients can be identified,
the absence of correlation is the general trend.
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E.5.1. Real part
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E.5.2. Imaginary part
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