The Atomik Microkernel API Reference, version 0.1 july 2014 (English)

Atomik Kernel API

SLAB allocator

The primary memory allocation mechanism is the buddy allocator. However, the smallest allocatable
memory unit of this allocator is exactly one page long (which, in x86 systems, is 4 KiB).

To reduce memory wasting by directly calling page_alloc and reduce object initialization overhead, Atomik
provides the SLAB allocator abstraction, which optimizes the construction and destruction of objects of the
same type. This can be understood as an application of object pool pattern to kernel space.

We can define a SLAB as an object with enough information to build an object of a defined type. A SLAB
consists of one or more pages holding a SLAB header and an array of slots where preallocated objects are
placed. The SLAB header contains a set of fields describing its occupancy, and pointers to constructor and
destructor routines (if any).

All SLABs in the system are referenced by a global array and identified by a unique, up to 63 characters
long ASCIl name.

Structures

‘str‘uct kmem_cache;

This is the basic structure used by the SLAB allocator, and describes a single SLAB. All allocations and
freeings are performed against this object.

Functions

struct kmem_cache *kmem_cache_lookup (const char *name);
Searches a SLAB with a specified name in the system-wide list of SLABs. This function returns a pointer to
the corresponding SLAB or NULL if the specified SLAB doesn't exist.

This function is atomic, this is, interrupts are temporarily blocked during its execution (if they weren't) and
restored to their previous state via critical sections. This makes this function suitable for execution both in
interrupt context and task context.

Reentrant : yes
Thread-safe : yes
Interrupt-safe : yes



The Atomik Microkernel API Reference, version 0.1 july 2014 (English)

struct kmem_cache *kmem_cache_create (const char *name, busword_t size,
void (*constructor) (struct kmem_cache *, void *), void (*destructor)
(struct kmem_cache *, void *));

Creates a SLAB named nanme, for allocating objects of size up to size, with an optional constructor and
destructor for each object.

The function returns a pointer to the created SLAB, or NULL if there wasn't enough memory left to perform
the allocation.

Upon the preallocation of any object, the function specified by constructor is called. If the SLAB needs to
be shrunk, destructor is called for each object that is about to be freed. Both functions receive two
arguments : a pointer to the refering SLAB and an opaque void * pointer with private data to be used by
them. If the constructor is NULL, initialized objects are filled with zeros. If the destructor is NULL, no
destruction operation is performed before freeing.

This function is atomic, this is, interrupts are temporarily blocked during its execution (if they weren't) and
restored to their previous state via critical sections. This makes this function suitable for execution both in
interrupt context and task context.

Reentrant : no
Thread-safe : yes
Interrupt-safe : yes

void kmem_cache_set_opaque (struct kmem_cache *cache, void *private);
Sets the opaque pointer passed to constructor and destructor of the SLAB cache to the value private.

This function is atomic, this is, interrupts are temporarily blocked during its execution (if they weren't) and
restored to their previous state via critical sections. This makes this function suitable for execution both in
interrupt context and task context.

Reentrant : yes
Thread-safe : yes
Interrupt-safe : yes

void *__kmem_cache_alloc (struct kmem_cache *cache);

Returns a pointer to a preallocated object in the SLAB cache and marks its slot as used. If there are no
preallocated free slots, __kmem_cache_alloc returns NULL.

Note that this function lacks of any locking mechanism. It's the lowest-level SLAB allocation function and
should only be used if the exclusive access to the SLAB is ensured.

Reentrant : yes
Thread-safe : no
Interrupt-safe : no



The Atomik Microkernel API Reference, version 0.1 july 2014 (English)

void *kmem_cache_alloc_irqg (struct kmem_cache *cache);

Same as __kmem_cache_alloc, but ensures that no interrupts may be served during its execution. Thus,
this function is atomic, this is, interrupts are temporarily blocked during its execution (if they weren't) and
restored to their previous state via critical sections. This makes this function suitable for execution both in
interrupt context and task context.

Reentrant : yes

Thread-safe : yes

Interrupt-safe : yes

void *kmem_cache_alloc_task (struct kmem_cache *cache);

Same as __kmem_cache_alloc, but protects the SLAB with its own private kernel mutex. Tasks that try to
access a locked SLAB will sleep until it's unlocked by the owning task. As this function can sleep, it mustn't
be called from interrupt context.

Reentrant : yes
Thread-safe : yes
Interrupt-safe : no

void *kmem_cache_alloc (struct kmem_cache *cache);
Same as __kmem_cache_alloc but detects the current context (task or interrupt) and calls
kmem_cache_alloc_task or kmem_cache_alloc_irg accordingly.

These functions are inherently dangerous when misused. Calls to kmem_cache_*_task and
kmem_cache_*_irq shouldn't never be merged against the same SLAB as interrupts will bypass the mutex
lock and using kmem_cache_* makes more difficult to spot this kind of bugs. If allocations are going to
happen both in interrupt and task context, in case of doubt, the best approach is to use
kmem_cache_*_irq in both contexts.

Reentrant : yes
Thread-safe : yes
Interrupt-safe : yes

void __kmem_cache_free (struct kmem_cache *cache, void *ptr);
Marks the slot corresponding to the object pointed by ptr as free in the SLAB cache.

Note that this function lacks of any locking mechanism. It's the lowest-level SLAB freeing function and
should only be used if the exclusive access to the SLAB is ensured.

Reentrant : yes
Thread-safe : no
Interrupt-safe : no



The Atomik Microkernel API Reference, version 0.1 july 2014 (English)

void kmem_cache_free_irq (struct kmem_cache *cache, void *ptr);

Same as __kmem_cache_free, but ensures that no interrupts may be served during its execution. Thus, this
function is atomic, this is, interrupts are temporarily blocked during its execution (if they weren't) and
restored to their previous state via critical sections. This makes this function suitable for execution both in
interrupt context and task context.

Reentrant : yes
Thread-safe : yes
Interrupt-safe : yes

void kmem_cache_free_task (struct kmem_cache *cache, void *ptr);

Same as __kmem_cache_free, but protects the SLAB with its own private kernel mutex. Tasks that try to
access a locked SLAB will sleep until it's unlocked by the owning task. As this function can sleep, it mustn't
be called from interrupt context.

Reentrant : yes
Thread-safe : yes
Interrupt-safe : no

void kmem_cache_free (struct kmem_cache *cache, void *ptr);
Same as __kmem_cache_free but detects the current context (task or interrupt) and calls
kmem_cache_free_task or kmem_cache_free_irq accordingly.

These functions are inherently dangerous when misused. Calls to kmem_cache_*_task and
kmem_cache_*_irq shouldn't never be merged against the same SLAB as interrupts will bypass the mutex
lock and using kmem_cache_* makes more difficult to spot this kind of bugs. If allocations are going to
happen both in interrupt and task context, in case of doubt, the best approach is to use
kmem_cache_*_irq in both contexts.

Reentrant : yes
Thread-safe : yes
Interrupt-safe : yes

int __kmem_cache_grow (struct kmem_cache *cache);

Adds more free pages to SLAB cache. This function is usually called immediately after a failure of
kmem_cache_alloc to get more storage space available. Each call to this function will try to grow twice as
big as the previous successful growth operation against the SLAB. This function returns @ on success or -1
if there weren't enough free pages in the system to make the SLAB grow.

Note that this function lacks of any locking mechanism. It's the lowest-level SLAB growth function and
should only be used if the exclusive access to the SLAB is ensured.

Reentrant : yes
Thread-safe : no
Interrupt-safe : no



The Atomik Microkernel API Reference, version 0.1 july 2014 (English)

int kmem_cache_grow_irq (struct kmem_cache *cache)

Same as __kmem_cache_grow, but ensures that no interrupts may be served during its execution. Thus, this
function is atomic, this is, interrupts are temporarily blocked during its execution (if they weren't) and
restored to their previous state via critical sections. This makes this function suitable for execution both in
interrupt context and task context.

Reentrant : yes
Thread-safe : yes
Interrupt-safe : yes

int kmem_cache_grow_task (struct kmem_cache *cache)

Same as __kmem_cache_grow, but protects the SLAB with its own private kernel mutex. Tasks that try to
access a locked SLAB will sleep until it's unlocked by the owning task. As this function can sleep, it mustn't
be called from interrupt context.

Reentrant : yes
Thread-safe : yes
Interrupt-safe : no

int kmem_cache_grow (struct kmem_cache *cache, void *ptr)
Same as __kmem_cache_grow but detects the current context (task or interrupt) and calls
kmem_cache_grow_task or kmem_cache_grow_irq accordingly.

These functions are inherently dangerous when misused. Calls to kmem_cache_*_task and
kmem_cache_*_irq shouldn't never be merged against the same SLAB as interrupts will bypass the mutex
lock and using kmem_cache_* makes more difficult to spot this kind of bugs. If allocations are going to
happen both in interrupt and task context, in case of doubt, the best approach is to use
kmem_cache_*_irq in both contexts.

Reentrant : yes
Thread-safe : yes
Interrupt-safe : yes



